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Summary

This note concerns the main definitions of self-inductance (i.e. differential, secant and energy-
based) that are relevant for the electromagnetic modelling of accelerator magnets. In
particular, we consider the case of iron-dominated resistive magnets. The different definitions,
which coincide in the linear limit at low field, tend to diverge dramatically as the iron
becomes saturated. We describe the measurement technique and the results for two case
studies, i.e. the PS MTE octupole and a main SPS dipole of MBB type. We show that the
differential inductance may drop dramatically at high current, up to about a factor two, even
for magnets where the field non linearity is within a few percent only.

1. Introduction

Accelerator magnets can store large amounts of magnetic energy, mostly concentrated in
the aperture, and thus behave electrically like very large inductors with typical values ranging
from a few to a few hundred millihenry. The energy stored in dipole magnets is usually much
higher than in multipoles of comparable size and peak field strength, owing to the uniform field
distribution; however, the self-inductance is proportional to the square of the number of
excitation coil turns and is therefore strongly dependent upon the specific design of each
magnet.

Accurate knowledge of the load represented by a magnet for the power converter is
essential for precise and stable control of the field produced, especially for fast-cycled magnets
where the inductive voltage represents the major component. For typical resistive (normal
conducting) magnets the inductance will be dominated by the presence of the iron core, which
leads to non-linearity mainly in the form of saturation (lower field/current ratio at high current)
and hysteresis (increased field for the same current on a ramp down with respect to a ramp up).
Hysteresis effects are usually small (of the order of 10~ of the nominal field) and rarely
relevant, except for specific situations e.g. in machines with large pulse-to-pulse modulation, or
when the beam is present on both ramp directions. On the other hand, saturation often affects
dramatically the inductance and hence final performance.



The present note is concerned with the experimental evaluation of the inductance L(I) of
resistive magnets as a function of the excitation current level, within a target uncertainty of the
order of 1% (similar considerations apply in principle also to superconducting magnets, for
which saturation effects are typically at least one order of magnitude smaller). The main aim is
to establish the drop AL that has to be expected due to saturation at high current (Fig. 1). We
shall see that several definitions of the inductance are possible, which all coincide in the linear
case and diverge at high field when saturation occurs. Many different definitions are covered in
the existing literature, which however concerns mostly inductors without air gaps (see e.g. [1])
and rotating machines, which are dominated by various types of losses. If the magnet cycle
period is long (1~1000 s), as is often the case for CERN accelerators, the effects of losses due
to hysteresis and eddy currents are small and will be ignored in this note.

Lo —

AL

Fig. 1 — General qualitative behavior of magnet inductance L vs. excitation current /

2.  Theoretical aspects

2.1 Simplified electromagnetic model

A typical resistive magnet can be represented ideally by an excitation coil with N; turns
producing the magnetic flux @, plus an iron yoke with relative permeability . that channels the
flux to an air gap where a useful magnetic field is produced. In the 2D case (i.e. infinitely long
magnet), represented schematically in Fig. 2, the field in the gap g is given by:

B = Moty N¢l 1)
t+ug

where ¢ represents the average length of the magnetic circuit within the iron. The field is
commonly measured with a pick-up coil via integration of the induced voltage V,,;. In reality,
some of the flux will leak out of the iron, short-circuiting the gap, passing in part through the
coil itself. The amount of leakage flux depends upon the overall field level and the geometry,
since saturation is reached at different excitation levels in different parts (e.g. sharp edges
concentrate the field and saturate much sooner than the bulk).



iron core

Fig. 2 - Schematic representation of a resistive dipole magnet

LB iron core

Fig. 3 — Schematic representation of a resistive quadrupole magnet
(the four coils are in series with alternating polarities)

Analogous considerations for a quadrupole magnet lead to the following simplified
expression for the field gradient in the gap, assumed to be round with diameter &:

8oy Npl

= 2¢ + 1, 0)0

2)

where Np is the number of turns per pole and € is the average length of one of the four
symmetric magnetic circuits in the iron (Fig. 3).



2.2 Definition of inductance based on magnetic flux

The apparent or secant inductance L of the excitation coil is defined as the ratio of the
excitation current / to the fotal flux @ linked through the coil itself (see [2], §33):

iy

L=+ 3)

Assuming that all , turns in series generate the same flux @,, the total flux generated can
be expressed by:

(Dgen = N @, = N L 4)

where L, represents the self-inductance of a single turn. Taking flux leakage into account, the
total flux @ linked through the excitation coil is given by:

¢ = th)gen(l — Acoi) &)

where A.,;; represents the fraction that is not linked back into the excitation coil. The self-
inductance (3) can be therefore written as:

P
L= Ne—=(1 = Zcon) = NF(1 = Acoir) L (6)

which shows explicitly the well-known dependence upon the square of the number of turns.

2.2.1 Relationship between apparent inductance and magnetic field

Due to leakage, the magnetic flux in the gap @,,, will be in general a fraction of the total
flux generated. Taking for simplicity the case of a dipole, where the flux in the gap is given by
the field B passing through the pole surface 4, we can write:

CDgap = (Dgen(]- - Ayoke) = BA (7)

where A, represents the fringe field that short-circuits the gap. Substituting @, derived
from (7) in (6), we find that:

B 1_/1coil
L= NA———— 8
T = Ayope (8)

From (8) we see that leakage from the coil always reduces the inductance, while leakage from
the yoke, for a given flux in the gap, increases the inductance. In the linear regime, normally
approximated by the behavior at low field, the transfer function B// and the leaked flux
fractions are constant so that also the inductance is constant i.e. L=L,. In reality B, A.; and
Ayoke are non-linear functions of the current 7, and by differentiating (8) w.r.t. /, dividing the
resulting expression by (8) and assuming further that 4o, Acor << 1 we find that:
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AL AB
T ~ ? - Alcoil + AAyoke (9)

Equation (9) clarifies how different sources of non-linearity affect the inductance. The first
term AB/B is mainly linked to the material’s properties, i.e. the magnetic permeability curve,
while the non-linearities of the leakage fractions are mainly a function of the geometry. For
instance, if we assume an infinitesimally thin excitation coil then A.,; =0, while if we take e.g.
a toroidal yoke geometry with very large aspect ratio then A, =0. In general, however, the
leakage fractions are small (a few %) and the inductance drop due to saturation is of the same
order as the drop of the magnetic field. We may consider two extreme cases, depending on the
ratio between the magnetic length /,, and the gap size:

- short magnet (/,/g = 1): as the iron saturates, a large fraction of the total flux tends to
leak at the ends and through the coils, so that in (9) A4.,; becomes the dominant term

and therefore:
AL AB
e (10)
L B

- long magnet (/,/g >> 1): as the iron saturates, a large fraction of the total flux tends to
leak from the yoke, so that in (9) A44,,t becomes the dominant term and therefore:

AL AB
Rl (11)
L B

The two case studies that follow provide examples of these two extremes.

2.3 Definition of inductance based on circuit behaviour

From the point of view of the electrical circuit powering the magnet, one can express the
voltage drop at the magnet leads as the sum of a resistive and an inductive component d®/d[
obtained by differentiating (3):

dod d
14 RI+-dt RI + dtUJ) (12)

The so-called differential inductance L, (a.k.a incremental inductance) is defined as the
incremental ratio of flux to current or, equivalently, as the ratio of the inductive voltage to the
current ramp rate [3]:

L _d® _V-RI
4=dr T dl (13)
dt

Using this definition, the equivalent circuit equation can be written more simply:
dl
V=RI+L;— 14
1dt (14
From (13), we see that the differential inductance L,(I) can be related to L(I) via the

following linear differential equation:
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_ 15
Ld—L+IdI (15)

Assuming the initial condition L,(0)= L(0)=L,, integration of (15) provides the link
between the two definitions. Since in all practical cases dL/dI<0, the differential inductance is
always lower than the apparent inductance. The difference tends to vanish in the linear
regime, i.e. when either / — 0 or / — oo (complete saturation), and will be maximum in the
current range corresponding to both high dL/dI and high current.

From (15), we can infer that the effects of saturation in Ly(1) are at least as large as the
effects in L(I), plus an additional term /dL/d/ < 0 that depends on the shape of the L(I) curve
and that grows larger at higher currents. Qualitatively, we can therefore predict that the drop
of the differential inductance due to saturation will be high in magnets where the
transition to saturation occurs sharply and at high current. For instance, this is the case
for a well-optimized magnet, with no field concentrations and a uniform distribution of field
within the iron. By contrast, magnets having an insufficient volume of iron in the yoke and/or
sharp edges' will experience an earlier onset of saturation and a smoother transition, resulting
in lower AL,.

2.4 Definition of inductance based on magnetic energy

The inductance can be directly related to the energy W stored in the magnetic field, which
provides in principle a definition suitable for computation via (21) in those cases when the
field is known throughout the whole volume occupied, e.g. from a standard finite element
simulation. The stored energy can be calculated as a function of the time by integrating the
electrical input power V(t)I(t), taking into account only the inductive voltage component (i.e.
neglecting the dissipative term in R), making use of (12):

o

d
! — ! 16
(LDt fo Idd (16)

t t
w© = [ v-rouae = | 1
0 0
Integrating by parts, we may express the energy as a function of the current /:
W) = LI% - [, LAHI'dl'=I® — [ ddl’ (17)

Equation (17) can be represented graphically in the (/,®) plane as shown in Fig. 4, where
we can see that the energy W is given by the area between the @=L/ curve and the @ axis,
while the area W "between the curve and the I axis is also known as the magnetic coenergy
[4]. In the linear case, i.e. when L is a constant, (17) yields the well-known relation W='%LI".
By analogy, in the general case we can define an energy-equivalent inductance L,, such that:

1
W =L, (18)

! This is often true for very short or small magnets, where the amount of iron close to edges and hence concentrating the field
is higher w.r.t. the total volume of the yoke.
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Fig. 4 — General @/ relationship, where @=LI. The shaded area represents the magnetic energy W.

The relationship between L,, and L can be derived by equating (16) to (18) and integrating
once more by parts:

1 I
— 217 19
Ly, L+212 1°dL (19)

We see that dL<0 implies that L,<L. In practice, the dynamic inductance can be readily
evaluated from electrical measurements of V(?) and 1(2):

2 t
w = I—Zf (V —RDIdt’' (20)
0

These measurements are very often easily available directly from the converter powering
the magnet. The energy actually stored in the inductor could also be obtained, in principle,
from integration of the magnetic energy density over the whole volume V:

v [ Eav o

The rigorous evaluation of (21), however, is quite impractical whichever way one may
choose to do it, based either on simulations or measurements®. On the other hand, it is useful
to relate the energy-equivalent inductance to the magnetic field by equating (18) to (21), so as

to obtain:
L,(I) = f f f B(I) dv (22)

? The reasons are different in the two cases: a computer simulation must represent the 3D geometry in full detail, which
makes it computationally expensive, and its accuracy will be affected by the relatively low precision with which the magnetic
properties of the iron are usually known as a function of the position and of the other parameters; an experimental approach,
based for example on integration of the Maxwell stress tensor around a closed surface enclosing the volume of interest,
requires on the other hand an extremely detailed mapping which may be practically very difficult to achieve.

-7-




where B/I represents the field transfer function of the magnet, which is variable from point to
point and as a function of the current. From a qualitative viewpoint, by averaging the
integrand and differentiating on both sides of (22) we obtain:

AL, _A(B/I) _AB
L, ~ B/I ~ "B

(23)

(taking also into account that the relative non-linearity of the field is the same as the non-
linearity of the transfer function). By comparing (9) to (23) we conclude that the relative
drop of dynamic inductance due to saturation is approximately twice as big as the drop
of the apparent inductance.

2.3.1 Partial inductance due to the energy in the air gap

At first approximation it may be useful to carry out the integral in (21) only over the air
gap of the magnet, which normally represents the dominant contribution due to the
combination of high field and low permeability (z=gy). Let us consider for instance a dipole
with a rectangular air gap g of effective width @ and a quadrupole with a round gap of
diameter J. If the magnetic length in both cases is /,, we can express the corresponding
values of the gap inductance L, as:

B 2

. 1
dipole Ly, = /«l_<7) gal, (24)
0
T G\
quadrupole Ly = Toms (7> 04l (25)

where B/l and G/I represent the respective average transfer functions. With the aim of
deriving rough but very simple approximate expression based only on the geometry of the
magnet, it is possible to estimate field and gradient from (1) and (2) respectively in the limits
0 << g , € << 1D to obtain:

a
dipole Ly = poN? g I (26)
quadrupole Ly, = 87T,uoszlm (27)
We remark that, for magnet gaps of unit aspect ratio (i.e. round or square), the partial

inductance does not depend at all on the size of the gap but only on the magnet length and the
number of excitation coil turns.



2.4 Relationship between L, L, and L,,

The link between the different definitions of inductance can be better clarified by taking, as
an example, a simple expression for L(I) in closed form. We shall hereafter consider the

following model:
I n
L(D) = L, (1 _ (1—) ) (28)

where the current /” and the exponent n are fitting parameters. For values of n sufficiently
high this expression has been found to fit experimental data reasonably well; in particular, it
provides an almost flat curve for /— 0, and a drop to 0 for /—/" which becomes sharper as n
Increases.

By substitution of (28) in (13) and (17), the corresponding expressions for the differential
and dynamic inductance can be readily found (see an example plot in Fig. 5):

In
Lqy() =L, (1 —(1+n) (1—*) ) (29)
L,(I)=Ly|1 21+Tl Ly’ 30
wD =Lo{1- 2+n<1_*> (30)

From (28), (29) and (30) we can evaluate the magnitude of the drop due to saturation in the
differential and energy-equivalent inductance relative to the apparent inductance:

AL,
2 _1 31
AL +n (31)
AL, 1+n

=2 32
AL 2+n (32)

We observe that the effects of saturation in L,(1) and L,,(I) are always proportional to the
effect in L(I), irrespective of the current. In addition, we see that for increasing values of the
exponent n (which describe magnets with delayed, but sharper saturation) the drop of energy
equivalent inductance tends to a limit magnitude AL,,— 24L (consistently with (23)), while
the drop of the differential inductance grows unbounded.

In other words, this confirms that the divergence between differential and apparent
inductance grows larger for magnets which exhibit sharper saturation at higher current.
This explains the large variations in differential inductance that may be observed at high
current even on apparently well-behaved magnets (i.e. magnet which exhibit linear behavior
up to high current).
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Fig. 5 — Examples of simulated L(I), Ly(I) and Lw(I) curves for n=10
(to be compared to Fig. 13)

3 Measurement procedure

All the above defined versions of the inductance can be derived from a continuous
measurement of the waveforms of excitation current /(¢) and voltage V(t), which have to be
acquired with an ADC with a time resolution Az sufficient to provide the desired resolution
AL. The differential and energy equivalent inductances can be obtained directly from (15) and
(20) respectively, while the apparent inductance L(7) can be computed as detailed below (§3.2
and 3.3). The results thus obtained are valid in the quasi-static limit, i.e. for f — 0. Since
standard electronic inductance measurements are normally carried out with an AC bridge with
very small currents and typical frequencies of 50 Hz and above, direct comparison between
these results is not always accurate.

3.1 Test setup

The measurements reported below (§5) have been carried out with a multiplexed 16-bit
ADC, National Instruments USB 6216. This kind of device is sometimes affected by cross-
talk between channels or small voltage offsets which may, especially for long acquisition
times, affect the accuracy of the integrated voltages; in this case, an error of about 0.8 mV on
the V.,i; channel had to be corrected.

The time resolution needed may be estimated assuming, for simplicity, a linear drop from
Ly to zero over the current range from /(0))=0 to /=1,,,,. Since:
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dL dL.

=] 33
dt dl 3)
the upper limit of the sampling time is given by:
AL Ly ax
At < ——— 34
L] (34)

In the case study II below, a sampling frequency of 20 kHz was used. The current was read
via a Hazemayer DCCT with a sensitivity ratio of 600 A/V. The voltage drop at the excitation
coil was read through connectors fixed onto the main current leads, in order to improve the
accuracy of the resistance measurement, using a 10x voltage divider.

3.2 Integration in the time domain

Equation (12) can be integrated in the time domain starting from an arbitrary /,=/(0) to
obtain:

t
LI — Loly = @(t) = f (V — RDdt’ (35)
0

If Iy is sufficiently low, the initial value of the inductance L, can be taken from any other
available measurement. Assuming that the function /(#) can be inverted to obtain uniquely
t(I), the result can be expressed as a function of the current:

L() = L0170+@ (36)

where y(l)=¢(«(1)), with y(l;)=0. This method, as we shall see in the examples below,
provides smooth results thanks to the integration that filters away unwanted measurement
noise. Numerical difficulties may arise when /y=0, in the limit for /—0 when the ratio y(1)/1
becomes indeterminate and may fail to yield a stable value L.

The differential inductance L, can then be computed equivalently either from the definition

(13) or from (15). In both cases, the accuracy of the result is impaired by the numerical
differentiation, which unavoidably entails a certain amount of noise.

3.3 Integration in the current domain
As an alternative, if the function L,(/) is already known (e.g. from existing measurements)

one may consider direct integration of (15). A closed-form solution exists (see e.g. [5],
§1.1.34) and it can be written as:

I, 1!
L(D) =L07+7j Lydl’ (37)
1

0

whereby we find that Y (1) = fli Ladl'. The result is, of course, exactly the same as (36).
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4 Case study I: PS MTE octupole

In January 2011 a discrepancy was remarked between the saturation effects on the main
field of the PS Multi Turn Extraction octupoles, i.e. 4.9% at 550 A according to a recent test
campaign (Fig. 6), and a much larger differential inductance variation up to about 60% at
650 A seen by the power converter (Fig. 7).

On the basis of the measured L,(?) and I(¢), the inductance L(I) was calculated and the
result is plotted in Fig. 7. The Ly(I) curve is well fitted by (29) taking 7'=1030 A and n=5,
which gives the opportunity to interpolate between the 7 data points available. The apparent
inductance L(I) can be computed from (28) or (37).

The drop of L(I) due to saturation at 550 A is found to be 4.2%, quite close to the drop of
the field. The difference is consistent with (10) in the case A..i > Ayore, corresponding to a
magnet with very low length/gap aspect ratio (which for a MTE octupole is about 0.3). The
additional fringe field fraction at 550 A can be estimated in this case to be AA.,;;> 0.7%.

The interpolated drop of Ls(1) at 550 A is about 26%, which is roughly consistent with
(25) with some allowance for the approximation due to the limited number of data points.

To conclude, the large drop of the differential induction at high current and the

relatively small saturation measured of the main field are consistent within the framework
of the present model.
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MTE Octupoles Loadline
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Fig. 7 — Differential (measured) and apparent (calculated) inductance of a PS MTE octupole

(original data Ly(I) courtesy of G. le Godec)
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5 Case study Il: main SPS dipole type MBB

The main SPS dipole MBB 004, used since the construction of the machine as an integral
field reference in the test station in bldg. 867, was measured in May 2011. The main goal of
the test was to verify the value of the inductance at high field as needed to improve the
stability of the current control during operation.

The test was carried out using a standard measurement current cycle, which is slightly
different from actual machine cycles (max. field equal to 1.8 rather than 2.05 T, same cycle
for MBA and MBB types). In addition to V(?) and I(?), also the voltage V. (?) induced on an
integral pick-up coil inserted into the magnet was taken in order to estimate the magnetic field
energy in the gap.

The raw measurements are plotted in Fig. 8. The small voltage glitch visible on both coil
signals at t=4.6 s is due to a step in the excitation current, as one can more clearly see in Fig.
9. This feature does not alter in any way the results of this test.

5.1 Magnetization curve and transfer function

The integral magnetization curve BdL(I) obtained from the integration of V,,;(?) is plotted
in Fig. 10,while the transfer function i.e. the ratio BdL/I is plotted in Fig. 11. Saturation can be
seen to set in around 4000 A (although the magnetization curve is not perfectly linear even
below this threshold), and the drop on the flat-top at 4900 A is AB/B=3.4%. The sharp rise of
the transfer function below about 500 A is due to the presence of a residual field, which can
be estimated from the offset of the magnetization curve to be on average about 36 G i.e. 2:107
of the peak field . In relative terms, the width of the hysteresis cycle peaks at about 1.2% at
low field.

5.2 Eddy current effects

The effects of the eddy currents have been measured in order to identify the DC segment
of the flat top where to carry out coil resistance measurement (see §5.3 below). The lag of the
field w.r.t. excitation current has been calculated by first scaling the integrated field to match
the current /(4.5) at the end of the flat-top, subtracting /(¢) and then normalizing to /(4.5). The
resulting relative field error curve, plotted in red in Fig. 12, shows an exponential decay with
amplitude about 4-10* and time constant 7 ~ 100 ms, meaning that perturbations can be
considered to vanish effectively 300 ms after the end of the ramp.

5.3 Coil resistance and temperature effects

The coil resistance R has been checked by taking the average of the V/I ratio on the flat-
top (see Fig. 13), where both inductive voltages and eddy currents effects are negligible. A
priori either a current flat-top or flat bottom might have been used, however the magnified
curve plotted in orange in Fig. 13 shows clearly that flat-bottom measurements are far too
noisy to be reliable. The average on the flat-top provides a value R=4.552 mQ at 20°C, in
good agreement with the nominal value of 4.42 mQ obtained at I=0 with a standard four-wire
technique.

The measurement has been repeated after cycling continuously the magnet in order to
simulate the thermal conditions of the machine in operation. After 90 min. of cycling the
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resistance had increased to 4.60 mQ, corresponding to an average AT of 3.4°C. No further
increase has been observed after an additional period of 90 min, suggesting that thermal
conditions had already reached a steady state. The observed AT is much lower than what is
experienced in operation (estimated about 15 °C), probably due to a combination of lower
duty cycle and higher water flow rate on the test bench. Anyway, repeating the inductance
measurements after 90 and 180 min. gives essentially the same results, in accord with the fact
that the temperature is not expected to affect the measurement,.

5.4 Inductance measurements

The four versions of the inductance discussed above, i.e. L, Ly, L,, and L, have been
computed from (35), (13), (20) and (24) respectively and the results are plotted in Fig. 14.

At a first glance, we remark that the measurement of the differential inductance L4(1) is
strongly affected by the noise due to the dI/dt derivative. On the top and bottom plateaux
dl/dt=0 and as a result the computed L, tends to diverge, as the numerator of (13) is affected
by measurement errors and fluctuates around zero. By contrast, the measurements of the
apparent and energy equivalent inductance are smoothed by the integration and appear to
provide a more precise result.

The curves L(I) and L,(I) are extremely sensitive upon the value of R used in the
calculation. For instance, a variation of R of 10 (i.e. just 0.4 uQ) provokes about 10% error
in the low current region I<1000A, where large hysteresis-like artifacts are evident. These are
due to cancellation errors in the term (V-RI) appearing in (35) and (20), combined with the
amplification provided by the factor 1/I. The inductance should be expected to exhibit a
certain amount of hysteresis, which may be estimated to be around 1% by comparison with
the magnetization curve; however, the artifacts visible at low current in Fig. 14 are far too
large and should be considered measurement errors.

In the region between 1000 and 3500 A, the curves L(I), L,,(I) and L,(I) coincide within a
few 10 (Ly must of course be averaged) to the value L;=9.85 mH, very close to the nominal
value of 9.9 mH measured with a standard AC bridge at I=0. Such good agreement occurs
irrespective of the precise value taken for R, which supports the overall robustness of the
procedure.

The inductance L, calculated on the basis of the energy in the air gap, on the other hand,
has been estimated very roughly from (24) taking the field to be uniform over a volume
gal, =52 x 240 x 6300 mm3. The result is about 10% lower than L,, at high current, but
the estimation falls dramatically short at low current and therefore is not useful in practice.
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5.4.1 Inductance drop due to saturation

The drop due to saturation of the apparent inductance curve L(I), calculated at 4900 A, is
AL/L=4%, slightly larger than the drop of the magnetization in agreement with (11) for the
case of a magnet with a high aspect ratio (~120). The additional fraction of flux leaking from
the yoke can be estimated in this case to be Ad, x> 0.6%.

The drop of the differential and energy equivalent inductance is respectively:

AL 39.4% AL 10
L, 77 AL
AL, AL,

W o~ 7.29 W~ 18
L, % AL

This is in very good agreement with (31) and (32), and consistently with the curve L(I)
being nicely fitted by (22) with n=9, I =12 kA.

-16 -



SPS MBB 004 - standard measurement cycle
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Fig. 8 — Signals measured at 20 kHz during a SPS reference MBB current cycle.
The green curve (Vcoil) has been magnified by a factor 10.
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Fig. 9 — Zoomed-in detail from Fig. 8 (downward step in the excitation current at t=4.6 s)
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Magnetization of SPS MBB 004 (reference dipole)
12 - 0.1
10 - - 0.0
g - -0.1
£
E 6 - - -0.2
—
el
[=4]
4 - -0.3
2 - - -0.4
O T T T T _05
0 1000 2000 3000 4000 5000
1(A)

Fig. 10 — Integral magnetization curve BdL(I). The difference between the two branches of the hysteresis curve
is dashed in blue (same units of Tm, right vertical axis)
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Fig. 11 — Integral transfer function curve BAL(I)/I
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Eddy currents in SPS MBB 004 (reference dipole)
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Fig. 12 — Magnetic field behavior at the end of the ramp-up, showing the exponential decay of the eddy currents
relative field error = (integral field normalized to 1(4.5))/I(t)-1
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Fig. 13 —V/I curve for the calculation of the excitation coil resistance (in orange the same curve on a magnified scale)
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Fig. 14 — Comparative plot of the apparent, differential, energy equivalent and gap inductances

(to be compared to Fig. 5)
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6 Conclusions

We have revised the various definitions of the inductance of a magnet and clarified their
relationship, focusing on the deviation from linearity AL due to iron saturation at high field. In
particular we have considered the differential inductance L,, which is the parameter of interest
in the context of controlling precisely the excitation current.

A large drop of the differential inductance at saturation is to be expected even for magnets
which would appear, judging by magnetization measurements, to be affected only mildly. In
the case of SPS main dipoles of type MBB, for instance, a magnetic field saturation of just
3.4% corresponds to a differential inductance saturation of almost 40%.

Measurement of the inductance curves can be done when necessary on the test bench in
parallel with standard magnetic tests, adding little cost to the test program. High sampling rate
of the excitation current and voltage signals is essential to reduce errors due to the noise
inherent in L(1).

In case such measurement is not possible, the drop of differential inductance may be
predicted from the magnetic field behaviour using (9), (28) and (31), at the cost of additional
uncertainty due to the leaking flux fractions A..; and A,or. These should be then estimated
independently, for example via 3D finite element analysis or from accumulated statistical
knowledge on similar magnets.
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